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Abstract. Our goal in this paper is to build parametric models for a
dictionary of histological patterns that aid in the differential diagno-
sis of atypical breast lesions and evaluate the inferential power of these
hand-crafted features. Diagnosis of high-risk atypical breast lesions is
challenging and remains a critical component of breast cancer screening,
presenting even for experienced pathologists a more difficult classifica-
tion problem than the binary detection task of cancer vs not-cancer. Fol-
lowing guidelines in the WHO classification of the tumors of the breast
(an essential reference for pathologists, clinicians and researchers) and in
consultation with our team of breast sub-specialists (N = 3), we assem-
bled a visual dictionary of sixteen histological patterns (e.g., cribriform,
picket-fence), a subset that pathologists frequently use in making com-
plex diagnostic decisions of atypical breast lesions. We invoke parametric
models for each pattern using a mix of unary, binary and ternary features
that account for morphological and architectural tissue properties. We
use 1441 ductal regions of interest (ROIs) extracted automatically from
93 whole slide images (WSIs) with a computational pathology pipeline.
We collected diagnostic labels for all of the ROIs: normal and columnar
cell changes (CCC) as low-risk benign lesions (=1124), and flat epithe-
lium atypia (FEA) and atypical ductal hyperplasia (ADH) as high-risk
benign lesions (=317). We generate likelihood maps for each dictionary
pattern across a given ROI and integrate this information to determine
a diagnostic label of high- or low-risk. Our method has comparable clas-
sification accuracies to the pool of breast pathology sub-specialists. Our
study enables a deeper understanding of the discordance among pathol-
ogists in diagnosing atypical breast lesions.

Keywords: Atypical breast lesions · Visual feature dictionary · Para-
metric models · Computational pathology
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1 Introduction

Benign breast lesion diagnoses account for approximately a million cases an-
nually [1]. The patients are subjected to additional screening procedures de-
pending upon the relative risk associated with the diagnostic subtypes of the
benign lesions (e.g., high-risk is associated with atypical hyperplasia) [2,3]. Over
half of the patients diagnosed with atypical hyperplasia, which is histologically
further classified into atypical ductal hyperplasia (ADH) and atypical lobular
hyperplasia (ALH), contract breast cancer within 10 years of screening, thereby
demanding an accurate diagnosis of these precursor lesions.

On the contrary, a recent clinical study showed significant levels of disagree-
ment in differential diagnosis of cases with atypia (48 - 56%) resulting in overin-
terpretation (subjecting patients to unnecessary medical procedures) and under-
interpretation (subjecting patients to no treatment) [4]. The underlying difficulty
in classifying atypia from benign lesions stems from the fact that diagnostically
relevant histopathological patterns overlap in the spectrum of low- to high-risk
lesions, complicating the decision making process (Fig. 1). In the interest of pa-
tient management, it is convenient to stratify patients into “low- / high-risk”
categories based on their histological evidence and associated risk-factor [3].

Our Approach: Following guidelines in the WHO classification of the tu-
mors of the breast [5] (an essential reference for pathologists, clinicians and re-
searchers) and in consultation with our team of breast pathology sub-specialists
(N = 3), we assembled a visual dictionary of a subset of histological patterns
that aid pathologists in undertaking differential diagnoses of atypical breast le-
sions (Fig. 1). Our goal in this differential diagnostic study is to build parametric
models for each pattern using a mix of unary, binary and ternary features that
account for cytological (nuclear shape and orientation, lumen shape), architec-
tural (intraductal), and spatial-extent details of low- and high-risk lesions.

Prior Work: Previously, we have approached this problem in an unsu-
pervised manner by simply encoding cytological properties of nuclear atypia
and integrating them with the spatial distribution of the nuclei in relation-
ship to stroma and lumen components of breast tissue (i.e., architectural pat-
terns) [6]. Measured in terms of recall of high-risk lesions, the classification per-
formance reported here (0.76) is a significant improvement over our previous ap-
proach (0.69). Although there are studies in the machine classification of breast
tumors [7–10], many of these do not include diagnostically challenging ADH
cases nor provide directions for a computational understanding of the struc-
tural changes in the breast tissue triggered by atypia and other malignancies.
To the best of our knowledge, our work in analytically modeling a visual pat-
tern dictionary that traditionally defines the standards on tumor classification/
nomenclature for pathologists worldwide is the first of its kind.
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2 Methodology

2.1 Segmenting Ducts, Lumen and Nuclei

We designed a new algorithm for segmenting ducts, lumen and nuclei on large
scale WSIs. To start with, WSI images stored in RGB format are color decon-
volved into their respective stain intensities namely, hematoxylin and eosin by
using the color deconvolution plugin in ImageJ [11]. The stain colors are further
normalized with a reference dataset to standardize color variations for down-
stream processing (see supplementary material for more details). To ease the
computational burden of detecting ducts in a WSI, we build a Gaussian pyra-
mid of the hematoxylin intensity WSI. The hematoxylin intensity image at the
coarsest level of the pyramid is broken into non-overlapping superpixels (area
= 300 pixels), which are sets of connected pixels with similar intensity values,
using simple linear iterative clustering (SLIC) algorithm [12]. The innovative
steps of our algorithm are in assigning probabilities for the presence of a duct
given a pair of nearby superpixels (“context- ML”) and further identifying all
those superpixels that are “moderate-to-heavily” stained as the ones inside a
duct (“stain-ML”). Using the superpixels identified as initial guesses, we per-
form a region-based active contour segmentation [13] that separates foreground
(ducts/lumen) from the background (rest of the image). For hematoxylin and
eosin stained images, the cost-function for the active contour is driven by the dif-
ference in the mean of the hematoxylin stain in the foreground and background
regions. For example, two superpixels that have a high probability of being in-
side a duct have roughly the same stain (“moderate to heavy stain”) and their
boundaries are merged iteratively by the active contour optimization. Often
ducts appear as “clusters” and to segment these we run the region-based active
contour on the probability map returned by the context and stain-ML models.
The probability maps impute non-zero probabilities to ducts and regions bridg-
ing them, and a region-based active contour model run on the probability map
is more successful in delineating a cluster of ducts.

To identify lumen we use context- and stain-based ML models to select image
regions that are not part of the ducts – non-tissue areas on the WSI, connective
tissue areas and lumen. We perform connected-component analysis to select
and exclude large components, likely to correspond to non-tissue and connective
tissue areas. The remaining components highlight lumen regions that lie inside
ducts and are verified visually in our training images. To identify and segment
nuclei inside a duct, we first select parts of image lying inside a duct, then use
ImageJ to threshold intensities and finally run watershed to delineate the nuclear
boundaries (see supplementary material for more details).

2.2 Building Parametric Models of Histological Patterns

We invoke parametric models for histological patterns using a mix of unary,
binary and ternary features as shown in Fig. 1. The colorbars over each feature
in Fig. 1 indicate the lesion where the feature is most likely to be found, e.g.,



4

Fig. 1: Parametric models of histological patterns in the form of (A) unary, (B)
binary and (C) ternary features. (D) Computing likelihood scores to reveal (E)
dominant patterns in representative images of low- and high-risk lesions.

large and round nuclei are often found in high-risk lesions, small and elliptical
nuclei in low-risk lesions, and cribriform pattern tends to be exclusive to ADH.

Unary Features: In consultation with the breast pathologists on our team,
we selected a spectrum of morphological features on the basis of size, shape, and
spatial spread around each nucleus. Nuclear size (quantified using area) is known
to provide diagnostic cues in pathological grading [14–17], with groups of small
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and large nuclei having a propensity to belong to low-risk and high-risk lesions
respectively [18]. To build analytical models of small and large, we first construct
a histogram of nuclear areas obtained from an ensemble of ROIs showing pro-
totypical example regions within a duct containing small and large nuclei (Fig.
1A) and model this histogram with a Gamma distribution (see supplementary
material for a listing of all the model parameters derived in this section).

Next, nuclear shape has been identified as diagnostically meaningful, e.g.,
CCC lesion shows dominant elliptical nuclei [19]. We quantitate this feature
with roundness measured as (4π× area)/perimeter2 and ellipticity given by the
ratio of length of minor-axis to the length of major-axis. Roundness ranges from
0 (irregular star-like appearance) to 1 (perfect circle), while ellipticity charac-
terizes the “flatness” of an object with lower values denoting highly elliptical
nuclei (Fig. 1A). In each case, because of the intrinsic heterogeneity of these
measurements, we consider a spatial neighborhood around each nucleus, and
model the distributions of roundness with a Gamma distribution and ellipticity
with a 2-component mixture of Gaussians (MoG) model (Fig. 1A).

Finally, several studies have shown that studying the spatial organization
of nuclei provides insights into the abnormalities of cells which might eventu-
ally lead to malignancy. For instance, the nuclei arrangement in a CCC lesion
frequently exhibits crowding and/or overlapping [20,21].

However, for cases belonging to high-risk atypical lesions (FEA and ADH)
the nuclei tends to be uniform and evenly-spaced [20, 22]. To quantify “crowd-
ing” around each nucleus, its average distance to 10 nearest nuclei is computed.
An analytical model of crowdedness is constructed by considering local ROIs
within a duct where clusters of nuclei show significant crowding behavior and
then computing its spatial density. To capture evenly spaced/ uniform disper-
sion pattern around a nucleus, we start by placing a regular grid of size 3 × 3
centered at a reference nucleus and measure the density of 20 neighboring nu-
clei by counting the population of nuclei in each grid cell as described in [23].
We then compare this observed population against expected number of nuclei
under the complete spatial randomness hypothesis which asserts the occurrence
of points (here nuclei) within grids in a random fashion analogous to a Poisson
point process using a χ2-test statistic and acquiring the corresponding p-value
using the χ2 distribution table. Larger the p-value, greater is the likelihood of
observing a uniform/ evenly spaced dispersion of nuclei around the reference
nucleus.

Binary Features: Although, the unary features show some inferential
strength (indicated by the color bars on top of each feature in Fig. 1), a pathol-
ogist typically makes an informed decision by paying attention to the pairwise
combinations of such features. For instance, a CCC lesion (low-risk) exhibits
crowded and elliptical nuclei arrangement. A high-risk lesion tends to display a
greater likelihood of large-round, spaced-large, and spaced-round nuclei. A lesion
showing majority regions of small nuclei coupled with crowded and/ or spaced
behavior is representative of a normal duct. In our study, we considered 7 such
binary features obtained from pairwise combinations of unary features which
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is shown in panel Fig. 1B. We take z-scores for each unary feature, and model
the joint distribution of z-scores from the feature pair with a two-component,
two-dimensional mixture of Gaussian distribution.

Ternary Features: Some of the diagnostically relevant histological patterns
are best represented by a combination of more than two unary features. I. Large-
Round-Spaced : We take z-scores from each feature, i.e., large, round and spaced,
and build a three-component, three-dimensional mixture of Gaussian model us-
ing ground-truth examples. II. Cribriform: This pattern is characterized by po-
larization of epithelial cells within spaces formed by “almost” circular multiple
lumen (> 2) which are 5-6 cells wide and whose appearance closely resembles to
“holes in Swiss cheese”. This complex architectural pattern can be identified by
analytically modeling three sub-features: clustering coefficient, distance of the
nucleus from two nearest lumen, and circularity of the lumen (computed using
ImageJ) adjacent to the nucleus. The polarization of epithelial cells around lu-
men is characterized by clustering-coefficient and is computed by following the
method described in [24] and is illustrated in the second row of Fig. 1C. A group
of nuclei occupying the spacing between two lumen has a tendency to show crib-
riform pattern around them. Thus, we measure the average distance between
each nucleus to the nearest two lumen and model its distribution using gamma
function (see middle row of Fig. 1C). The final likelihood for cribriform pat-
tern is obtained from the weighted sum of the likelihood scores of sub-features.
We performed grid search on the mixing coefficients to learn that the likelihood
scores from the three sub-features should be mixed in the proportion of 0.2, 0.5,
and 0.3 respectively. III. Picket-Fence: This pattern is recognized from a group
of crowded elliptical nuclei oriented perpendicular to the basement membrane
(lumen). The analytical model of this high-order visual feature can be obtained
by constructing parametric models of four simple sub-features: distance of a nu-
cleus to nearest lumen, nuclear ellipticity, a spread in the angle of major-axis
of 10 nearby nuclei, and its local angle with respect to the basement membrane
as shown in the last row of Fig. 1C. Since, each sub-feature contributes equally
to observing this ternary feature, we chose to assign a mixing coefficient of 0.25
in combining the likelihood scores from the four sub-features to determine the
presence of a picket-fence pattern.

2.3 Computing Likelihood Scores to Assigning Diagnostic Labels

Computing Likelihood Scores: As discussed in the previous section, the para-
metric models for the histological patterns are probability distributions. For ex-
ample, a cytological feature like nuclear ellipticity for a given nucleus inside a
ROI can be assigned a probability value under the mixture of Gaussian model
for the template (Gt) image derived in Fig. 1A. However, accurate measure-
ments of ellipticity values are greatly influenced by the precision with which
nuclei boundaries are segmented. This naturally leads to heterogeneity in the
estimates of ellipticity. To account for this heterogeneity, we chose to compare
the neighborhood around the reference nucleus to the neighborhood in the tem-
plate image. In particular, we model the ellipticity values in the neighborhood
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of the reference nucleus with a new mixture of Gaussian model (Gn), just like
in Fig. 1A, and then compare model parameters of Gn with Gt as shown in
Fig. 1D. We used two different distance measures for comparing the model pa-
rameters: Kullback-Leibler divergence for mixture of Gaussians and two-sample
Kolmogorov Smirnov test for unimodal Gamma distributions. Small distances
imply greater evidence for the pattern. We turn the distances into a likelihood
score by an inverted S-function as shown in Fig. 1D. This process is carried out
in a similar fashion for every feature present in the visual dictionary.

Strategy for Differential Diagnosis: We adopt a non-linear strategy here,
similar to what expert pathologists do, in that we find sub-regions within ROI
by non-maxima suppression (threshold value of 0.85 on the likelihood scores)
where the evidence for one or more of the unary, binary or ternary feature
is dominating. Fig. 1E provides a visual illustration of the likelihood maps of
dominant patterns in representative images of low- and high-risk lesions. Low-
risk lesions show dominant islands of round, small, spaced, and spaced-small in a
normal ROI and elliptical, round, spaced-small, crowded-small, and picket-fence
neighborhoods in a CCC ROI. In comparison, high-risk lesions show dominant
regions of spaced-large, and spaced-round in a FEA labeled ROI and compelling
strengths for large and cribriform patterns along with traces of crowded and
spaced in ADH labeled ROI. These patterns validate the canonical forms shown
in Fig. 1A-C.

Having identified dominant unary, binary and ternary feature regions, we
use 3 descriptive statistics: median value of the likelihood scores of all the nuclei
found in each sub-region, median number of nuclei found in each sub-region and
the number of sub-regions.

This is calculated for each one of the unary, binary and ternary features
(total = 16), thereby obtaining a 48 column feature vector for a single image.
We computed feature vectors for all 1441 labeled duct ROIs which resulted in
834×48 size feature map used to train the classifier and 607×48 data matrix for
testing. To analyze the benefit of including binary and ternary features we further
slice the 48 column feature vector to be suitable for three scenarios: unary (U)
only, unary and binary (U-B), and unary, binary, and ternary features (U-B-T).
Due to inherent training and testing class imbalance, which reflects the real-
world prevalence statistics of atypical lesions, we upsampled high-risk examples
using SMOTE technique [25].

Prior to classifying the lesions, we pay close attention to the presence of
cribriform pattern, a symbolic visual primitive of ADH (a high-risk) category
[22, 26, 27]. ROIs predicted to show cribriform pattern are classified as high-
risk, if the number of nuclei forming the cribriform sub-region is greater than 8
(hyperparameter optimized over the training data). The reduced dataset, devoid
of cribriform, is tested for each of the scenarios (U, U-B, and U-B-T) with
logistic regression (LR), support vector machine (SVM), random forest (RF), and
gradient boosted classifier algorithms. The best model was chosen by optimizing
the parameters using GridSearchCV based on precision, recall, and F-scores and
then performed a 10-fold stratified cross-validation to check for overfitting. In
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optimizing the hyperparameters, the operating point was selected to value recall
over precision reflecting the clinical decision objective where a false negative
outcome is penalized higher than a false positive.

3 Results and Discussion

Baseline Comparisons U U-B U-B-T

Models Majority Expert Lenet Overfeat Alexnet LR

Recall 0 0.77 0.23 0.31 0.4 0.56 0.59 0.76

Specificity 0.88 0.84 0.86 0.64 0.69 0.63

TN 475 451 462 345 373 336

FN 54 48 42 31 29 17

Table 1: Performance measures with U, U-B and U-B-T feature sets and compar-
ison with other baseline strategies (including majority classification and average
single expert pathologist assessment) and deep-learning models.

Dataset: We used 1441 ductal ROIs extracted automatically from a compu-
tational pathology pipeline (see Section 2.1) from 93 WSIs which were scanned at
0.5µm/pixel resolution at 20× magnification captured using Aperio ScanScope
XT microscope. Among these, the training set constituting 834 ROIs were diag-
nostically labeled by a single sub-specialist pathologist (SP1), while a consensus
diagnosis was achieved for the remaining 607 testing set ROIs with a pool of
3 breast pathology sub-specialists (SP1, SP2, and SP3). The diagnostic labels
include: “Normal”, “CCC”, “FEA”, or “ADH”, which were further regrouped
into two classes: low-risk (Normal and CCC) and high-risk (FEA and ADH).
While the training set comprised of 587 low-risk and 247 high-risk examples, the
test set included 537 low-risk and only 70 high-risk cases, leading to the issue
of class-imbalance and the choice of recall of high-risk lesions as a performance
metric for the classification strategy. We are reporting recall to emphasize correct
detection of high-risk lesions, as the consequence of misdiagnoses (false negative)
implies increased chance of developing cancer for lack of providing early treat-
ment. The concordance among the 3 pathologists in labeling the test set was
moderate (Fleiss’ kappa score of ≈ 0.55 [6]).

Results: Table 1 shows the outcome of the differential diagnosis strategy
that we implemented using the three feature sets: U, U-B, and U-B-T. The
average performance of the three pathologists informs the baseline with sin-
gle expert pathologist [6]. We tested with Logistic Regression (LR), Random
Forest, and SVM with SMOTE and cross-validation parameter scanning. LR
performed the best. SVM and Random Forest misclassified high-risk images con-
taining large/round/spaced nuclei (a high-risk feature, see Fig. 1) as low-risk.
This resulted in lower recall compared to LR, which was successful in capturing
these features. Additionally, we tested approaches with deep learning: Lenet [28],
Alexnet [29], and Overfeat [30]. For training deep learning networks the ROIs
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obtained from duct segmentation were downscaled to 512 × 512 and the class
imbalance was handled by performing data augmentation through rotations and
reflections. Further, these class-balanced batches were trained using 3 networks
for 3,000 epochs.

Discussion: We find progressive improvement in the performance from U to
U-B to U-B-T feature sets, achieving highest recall of 0.76 which outperforms
the majority classification (obtained by assigning all cases to the majority label
of low-risk, thereby having a recall of 0) and has a comparable performance to
the assessment made by single breast pathology sub-specialist (SP1). Our ap-
proach with ∼150 parameters (see supplementary material) is readily amenable
to explainability which cannot be delivered by current deep learning (DL) meth-
ods (∼10-50 million parameters and large training data). To the best of our
knowledge, there are no widely reported DL methods for borderline of atypical
breast lesions, but an abundance of these algorithms for cancer vs no-cancer
datasets. To further promote research in the use of DL for borderline cases, we
chose to continue working with the same set of networks as used in our previ-
ous work [6], with one exception of incorporating improved duct segmentation
component (see supplementary material). The average computation time to ob-
tain likelihood scores and return a diagnostic label is 1 minute for an image
with 1000 nuclei on a single 2.4 GHz processor. In some low-risk examples, the
accurate identification of class specific histological patterns (e.g. small, crowded-
small) is missed due to the under-segmentation of overlapping nuclei resulting in
a wrong classification (false positive). However, we observed that U-B-T features
(best recall) misclassified 24% of the high-risk images as low-risk (false negative).
Upon investigation, we found that majority of the wrongly classified images had
rigid cellular bars and micropapillae (club-shaped lumina) architecture, two ad-
ditional distinguishing characteristics of ADH [5] not included in the dictionary
for the present study. As future work, we anticipate successful inclusion and an-
alytical modeling of the missing patterns from the WHO breast cancer resource,
to further reduce the number of false positives and false negatives. Our strategy
has the potential to extend to other organ systems and act as a surrogate in the
case review and quality assurance discussions for reducing discordance between
pathologists.
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