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ABSTRACT Anharmonicity in time-dependent conformational fluctuations is noted to be a key feature of functional
dynamics of biomolecules. Although anharmonic events are rare, long-timescale (ms–ms and beyond) simulations facil-
itate probing of such events. We have previously developed quasi-anharmonic analysis to resolve higher-order spatial
correlations and characterize anharmonicity in biomolecular simulations. In this article, we have extended this toolbox
to resolve higher-order temporal correlations and built a scalable Python package called anharmonic conformational anal-
ysis (ANCA). ANCA has modules to: 1) measure anharmonicity in the form of higher-order statistics and its variation as a
function of time, 2) output a storyboard representation of the simulations to identify key anharmonic conformational
events, and 3) identify putative anharmonic conformational substates and visualization of transitions between these
substates.
INTRODUCTION
Traditional analysis tools for biomolecular simulations have
focused on second-order statistics (1–3). Anharmonicity in
time-dependent conformational fluctuations is noted to be
a key feature of functional dynamics of biomolecules
(4–6). Although anharmonic events are rare, long-timescale
(ms–ms and beyond) simulations facilitate probing their
behavior. However, automated analyses and visualization
of anharmonic events from these long-timescale simulations
are proving to be a significant bottleneck.

We have addressed this challenge previously by propos-
ing anharmonicity as an organizing principle for conforma-
tional landscapes of proteins and other biomolecules (7). In
particular, we have built a quasi-anharmonic analysis
toolbox to resolve higher-order spatial correlations (8–11).
In this work, we have extended this toolbox to resolve
higher-order temporal correlations from long-timescale
simulations and built a scalable Python package, anhar-
monic conformational analysis (ANCA). ANCA has
modules to: 1) measure anharmonicity in the form of
higher-order statistics and its variation as a function of
time, 2) output a storyboard representation of the
simulations to identify key anharmonic conformational
events, and 3) identify putative anharmonic conformational
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substates and visualization of transitions between these
substates.
Description and functionality

Inputs to ANCA

ANCA can process trajectories in many formats commonly
used by the biophysics community, including Protein Data
Bank, CHARMM DCD files, AMBER coordinates, and
Gromacs xtc files. ANCA uses MDAnalysis (12,13) and
mdtraj (14) to capture and process coordinate (or other
feature) information from molecular dynamics (MD) trajec-
tory files. Further, the user can specify which features to
select and process using an extensive set of coordinate and
feature selection commands within the two packages. Using
Python’s inbuilt capabilities to process memory-mapped ar-
rays, we can process large trajectories up to several tera-
bytes. We demonstrate ANCA in analyzing a publicly
available millisecond-long trajectory data of the protein
bovine pancreatic trypsin inhibitor (BPTI) (15).

Conformational events storyboard

Using k to quantify anharmonicity in positional/angular de-
viations within MD simulations. To complement insights
from harmonic measures of conformational changes such
as the root mean-squared deviation, we have used higher-
order anharmonic measures, namely kurtosis (k) (8). k is
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FIGURE 1 ANCA analysis of a millisecond-long

simulation of BPTI. (A) The positional deviations of

Ca atoms are anharmonic and long-tailed (k ¼
15.94; z-score ¼ 3778.44 and p-value ¼ 0.00).

(B) Residues are colored by individual kurtosis

(k) values. Two residues—Asp3-Phe4—show the

largest k valueswhile sampling anharmonicmotions

infrequently, as shown in (C). Fig. S1 provides addi-

tional details on tracking the conformational events

for these two residues. The anharmonic fluctuations

can lead to significant conformational changes, as

shown in (D) and (E). (D) The time evolution of k

values seen through an exponential sliding window

of 1-ms half-life. Using a threshold of four SDs

(green dotted lines) above and below the mean k

(black dotted line), we identify a total of 17 confor-

mational events, labeled E1 � E17. (E) We show five

select events, E5, E6, E7, E8, and E15 as ensembles,

with the gray cartoon representing the previous

event and the orange cartoon representing the cur-

rent event. Arrows are used to highlight the open-

ing/closing of the flap regions of BPTI between

events. (F) A multidimensional description of the

simulation data using the top three time-delayed an-

harmonicmodes is given. Each conformation, repre-

sented by a dot, is colored by the distance between

the centers-of-mass of the flap regions (L1 and L2

in (C)). Three putative conformational substates

are demarcated by dotted ellipses depicting the

closed (I) and open (III) states that pass through an

intermediate state (II), as seen by the colored dis-

tance distribution. The arrows indicate how to reach

the closed and open states by walking along anhar-

monicmodes TD41 and TD42 from the intermediate

state. (G) These motions are shown in an ensemble

form, with L1 (red), L2 (green), b1 � b2 (cyan),

and the rest of the protein (gray) depicted in

light to dark colors, denoting start-to-end trajectory

evolution.

Computational Tool
calculated from either the Cartesian coordinates or dihedral
angle selections specified by the user. For a unimodal
Gaussian distribution with zero mean and unit variance,
k ¼ 3; a value of k> 3 indicates a super-Gaussian distri-
bution that is more peaked and heavier-tailed than the
baseline Gaussian. Conversely, a distribution that is less
peaked than the baseline Gaussian has kurtosis k< 3. The
statistical significance of k is assessed through the kurtosis
test, which rejects the hypothesis of normality when the
p-value <0.05. Fig. 1 A shows the histogram of positional
deviations of Ca atoms in the BPTI simulation. Using k,
we quantify which parts of the protein exhibit anharmonic
motions (Fig. 1 B) and for how long (Fig. 1 C). In the
case of BPTI, we can observe that a majority of the Ca

atoms spend at least 5% of their time exhibiting anharmonic
motions. However, helix two is mostly harmonic because
of the strong hydrophobic interactions and Cys-disulfide
bonds.

We analyzed the variation of k over the length of the tra-
jectory at each Ca coordinate (x, y, z) using an exponential
window with a half-life of 1 ms (11). Almost all of the
individual residues exhibit some degree of anharmonicity
(Table S1), whereas k is more pronounced along individual
coordinate directions (Table S2). These conformational
changes constitute events within the trajectory that may be
of interest to the user for further analysis.

Kurtosis-based event detection. Using k, the user can
identify conformational events that occur at distinct time-
scales (by changing the half-life of the exponential window)
and organize a conformational storyboard for the entire sim-
ulation(s). Fig. 1 D shows the variation of kurtosis over time
using an exponential window with a half-life of 1 ms; the
filtering procedure is described in detail in (11). Using a
user-defined threshold (green line in Fig. 1 D), a total of
17 conformational events are detected (labeled E1–E17).
Select events from this are organized as a storyboard in
Fig. 1 E. These events summarize the time points at which
the BPTI loops L1 and L2 open/close. The storyboard pro-
vides a means to quickly summarize large MD trajectories
while allowing the user to visually interact with events of in-
terest and simultaneously track other quantities of interest
(e.g., root mean-squared deviation, Rg, etc.) over the course
Biophysical Journal 114, 2040–2043, May 8, 2018 2041
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of long simulations (data not shown). In addition to using k,
conformational events can be detected with information
theoretic measures such as mutual information (16); how-
ever, these techniques can be computationally expensive.
Trajectory segments from the storyboard can be further
analyzed to identify putative conformational substates, as
discussed below. We also provide the ability to construct
storyboards for individual residues (see Fig. S1 for an
illustration).

Characterizing anharmonic modes of motion in the
conformational landscape

ANCA provides four core modules for analyzing MD trajec-
tories. These modules take as input X either Cartesian coor-
dinates of dimensions 3N � t, where 3N represents the
three-dimensional (x, y, z) coordinates of the individual
atoms selected for analysis, or cosine/sine transformed dihe-
dral angles, namely ðf;j;cÞ resulting in a D � t, where D
represents the total number of transformed dihedral angle
selections. In both cases, t represents the total number of
conformations from the simulations.

The SD2 module removes dominant second-order spatial
correlations by computing a spatial covariance matrix and
performing principal component analysis. In addition to
the simulation data, SD2 requires as input m the subspace
dimensionality. m can be adjusted by examining the inflec-
tion points in the cumulative variance plots that this module
returns. SD2 diagonalizes the covariance matrix and
returns the eigenvalues S (size m � 1), eigenvectors B (3N
or D � m), and the projection matrix Y ¼ BTX (m � t).
The top three modes from the SD2 module for the BPTI
simulations are shown in Figs. S2 A and S3.

The SD4 module (previously quasi-anharmonic analysis
(8)) attempts to resolve the intrinsic nonorthogonal spatial
dependencies in atomistic fluctuations. The second-order
projections, Y, from SD2 are used to build a fourth-order
spatially correlated cumulant tensor. SD4 approximately di-
agonalizes this tensor to return an anharmonic mode matrix
W (3N or D � m). The default ordering of the ANCA modes
is based on the kurtosis of the projected coordinates; how-
ever, this ordering may not always correspond to a bio-
physically relevant reaction coordinate (11). This can be
attributed to the fact that ANCA pursues rare conforma-
tional events, and if the projected coordinates correlate
with such rare events, then ANCA can indeed provide bio-
physically meaningful projections.

To build associations between the SD4 modes and bio-
physically meaningful reaction coordinates, the user can up-
load physical observables such as radius of gyration ðRgÞ,
pairwise distances between specific atoms/groups of atoms,
or overall energy values (potential þ kinetic) from the sim-
ulations and simultaneously visualize how the physical ob-
servables map onto each of the SD4 modes (8) or use other
techniques to identify reaction coordinates (17). For the
BPTI simulations, the top three modes from the SD4 module
2042 Biophysical Journal 114, 2040–2043, May 8, 2018
are shown in Figs. S2 B and S4. We used the distance be-
tween residues Pro9 and Phe33 to map the conformational
fluctuations involved in opening/closing of the BPTI flaps.
Indeed, the motions captured by SD43 correspond to an in-
crease in the distance between the flap regions of BPTI.

The TD2 module removes dominant second-order tempo-
ral correlations by computing a time-delayed covariance
matrix and performing principal component analysis. The
inputs to this module are similar to the SD2 module, with
one additional user-specified parameter, t, that denotes the
lag time over which the temporal correlations are to be
resolved. The outputs of this module include Z, a matrix ob-
tained by projecting the simulation data on the dominant
time-delayed eigenvectors and the corresponding eigen-
values. The top three modes from the SD4 module for the
BPTI simulations are shown in Figs. S2 C and S5.

The TD4 module constructs a time-delayed fourth-order
kurtosis tensor, which is then approximately diagonalized
to obtain anharmonic modes of motions once the second-or-
der spatial and temporal correlations are resolved (18). The
TD4 module is the temporal analog of the spatial SD4
module. The input parameters to this module includes the
matrix Z (from the TD2 module), a user-specified subspace
value m denoting the number of desired anharmonic modes
of motion, the lag time t, and the matrix V. The outputs from
the module include the separating matrix W.

For BPTI, the projections from the three principal TD4
modes (TD41–TD43) depicted in Fig. 1 F describe essential
motions of the flap regions along two distinct directions. To
quantify these motions, we use a reaction coordinate based
on the distances between residues Pro9 and Phe33. To un-
derstand these motions further, we depict the conforma-
tional transitions in BPTI (Fig. 1 G); in each case, the
flaps open/close, albeit in distinct directions and in some
cases even capturing rare transitions involved in exchange
of the flaps (see Supporting Material). The ANCA modes
enable us to quantitatively understand the extent to which
the relative motions between the flaps expose opening/clos-
ing of this region. The projections of the simulation data as
well as the description of the principal modes from SD2,
SD4, and TD2 for BPTI are provided in Figs. S3–S5.
Visualization

We provide the user with example iPython notebooks to
visualize the results from the analyses over a web browser
(Fig. 1, A, D, and F). To visualize structural data ob-
tained from ANCA, we provide scripts for generating anhar-
monic modes using PyMOL or Visual Molecular Dynamics
(Fig. 1, B, C, E, and G). Individual regions in the protein can
be colored using the output PyMOL files. ANCA is avail-
able as an open-source Python package under the BSD
3-Clause License. Python tutorial notebooks, documenta-
tion and examples are available for download from http://
csb.pitt.edu/anca.

http://csb.pitt.edu/anca
http://csb.pitt.edu/anca
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Conclusion

Several applications support analyses of MD trajectories
based on second-order statistics, including MDAnalysis
(12,13) and mdtraj (14). To complement these tools, we
have developed ANCA as a package for analyzing higher-
order anharmonic motion signatures from MD simulations.
ANCA provides a biophysically meaningful organizational
framework for long-timescale biomolecular simulations
and can be integrated with other software such as PyEMMA
(19) to build Markov models of MD simulations.
SUPPORTING MATERIAL

Five figures and two tables are available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(18)30388-6.
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