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We outline recent developments in artificial intelligence (AI) and

machine learning (ML) techniques for integrative structural

biology of intrinsically disordered proteins (IDP) ensembles.

IDPs challenge the traditional protein structure–function

paradigm by adapting their conformations in response to

specific binding partners leading them to mediate diverse, and

often complex cellular functions such as biological signaling,

self-organization and compartmentalization. Obtaining

mechanistic insights into their function can therefore be

challenging for traditional structural determination techniques.

Often, scientists have to rely on piecemeal evidence drawn

from diverse experimental techniques to characterize their

functional mechanisms. Multiscale simulations can help bridge

critical knowledge gaps about IDP structure-function

relationships — however, these techniques also face

challenges in resolving emergent phenomena within IDP

conformational ensembles. We posit that scalable statistical

inference techniques can effectively integrate information

gleaned from multiple experimental techniques as well as from

simulations, thus providing access to atomistic details of these

emergent phenomena.
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Introduction
Our current understanding of protein structure-function

relationships have been largely driven by the ability to

visualize high-resolution three-dimensional (3D)
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structures of proteins with the aid of structure determina-

tion techniques including X-ray crystallography, nuclear

magnetic resonance (NMR), and cryo-electron microscopy

(cryo-EM) [1]. These traditional structure determination

techniques have often been supported with evidence from

biochemical/biophysical methods tomap out the functional

consequences of perturbing protein structures through

mutations and/or other modifications and for drug-discov-

ery, protein design and other applications. However, the

discovery of intrinsically disordered proteins (IDPs), and

proteins with intrinsically disordered regions (IDRs) have

challenged this traditional structure–function relationship

paradigm [2]. In particular, IDPs/IDRs adapt their 3D

structures exquisitely in response to their substrates as well

as post-translational modifications (such as phosphoryla-

tion) and/or based on other physiological conditions (such

as pH, crowding, etc.) and can mediate context-specific

functions within cells [3]. Indeed, IDPs/IDRs are known to

be equally sensitive to perturbations to their primary

sequence, where mutations can have devastating effects

including misfolding, protein aggregation (e.g. Parkinsons,

Alzheimers and other ‘conformational diseases’) and dys-

regulation of signaling pathways (e.g. cancer, diabetes,

cardiovascular diseases) [4]. Given their central role in

mediatingcomplex biological functionswithincells, under-

standing the structure-function paradigm of IDPs/IDRs

remains an important challenge for modern biophysics.

The remarkable plasticity of IDPs/IDRs is enabled by their

ability to undergo folding upon binding — one of the key

mechanistic processes whereby an IDP/IDR adopts distinct

secondaryoreventertiarystructureuponbindingtoaspecific

substrate (Figure 1). This coupled folding and binding

processes occur at diverse length-scales and time-

scales — beginning with finer conformational changes

involving partial folding within IDR segments (e.g. helix–

coil transitions) to disorder-to-order conformational transi-

tions (e.g. formation of a-helix) upon binding to a particular

substrate [5]. These local interactions can then drive the

formation of higher-order interactions, whereby repeated

‘segments’ of hydrophobic/polar amino-acid residues can

transiently interact (albeit specifically) to their target sub-

strates. These multivalent interactions in turn lead to coac-

ervationor liquid–liquidphaseseparation(LLPS),whichhas

importantbiological implications, includingcompartmental-

ization (e.g. membraneless organelles) [6]. One of the key

challenges then is to elucidate the mechanisms by which

IDPsundergocoupledfoldingandbindingprocessesleading

to such diverse functions.
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Figure 1
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Role of AI/ML techniques in IDP/IDR biology. Conformational fluctuations within IDPs occur at a wide range of time-scales (top panel) and length-

scales (middle panel). Further IDP systems are sensitive to physiological conditions, presence of biological modulators, and other mechanisms

such as post-translational modifications. Solution scattering (X-ray/neutron), smFRET and NMR techniques provide access to probe IDP

fluctuations over a wide range of length-scales and time-scales; while X-ray and cryo-electron microscopy/ tomography provide access to static

snapshots across longer length scales. It is notable that even within cryo-EM and TEM datasets, inherent limitations in resolution can result in a lot

of the flexible regions missing, leading to the use of multiscale molecular simulations to fill in the gaps. However, even with improvements in

enhanced/adaptive sampling techniques, computational methods and computer hardware, it has been difficult to access details beyond O(mm)

length-scales and O(ms) time-scales. We posit that AI/ML approaches will act as a ‘glue’ that can enable integrating insights from simulations with

experiments while providing a platform to interpret mechanisms of IDP/IDR function.
Although there has been tremendous progress in using

traditional structure determination techniques in extend-

ing the length-scales and time-scales for studying IDPs

[7], these techniques alone cannot fully describe the

range of conformational flexibility of IDPs/IDRs. Fur-

ther, given the intrinsic limitations in the length-scales

and time-scales that these techniques can access, often

multiple experiments are needed to probe the mecha-

nisms by which IDPs/IDRs function, leading to a piece-

meal approach in interpreting IDPs/IDRs ensembles [8].

Molecular dynamics (MD) simulations, either via all-

atom simulations or enhanced sampling techniques or

multiscale coarse-grained methods provide a much

needed ‘boost’ in terms of sampling IDP conformational

landscapes, allowing one to obtain insights into complex

phenomena such as LLPS [9]. Synergy between
www.sciencedirect.com 
experiments and simulations have been quite successful

in quantitatively probing how IDPs/IDRs function; how-

ever, such studies find it challenging when different

experiments provide seemingly conflicting evidence that

are not necessarily explained by simulations [10].

Motivating the need for AI/ML approaches in integrative IDP
structural biology. Advances in machine learning (ML) and

artificial intelligence (AI) techniques have recently made

strides in a number of scientific disciplines including

molecular biophysics [11]. We posit that AI/ML techni-

ques can effectively act as a ‘glue’ to integrate disparate

sources of experimental and simulation data and to infer

functional mechanisms of IDP/IDRs. In this review, we

include a broad definition of how AI/ML methods are

applied, where traditional statistical inference methods
Current Opinion in Structural Biology 2021, 66:216–224



218 Folding and binding
can be combined with methods that include neural net-

works. We examine how AI/ML techniques are being

utilized in addressing the aforementioned challenges in

IDP integrative structural biology, namely: (1) firstly,

characterizing the conformational heterogeneity of IDP

ensembles (Section ‘AI/ML for characterizing IDP

ensembles’); secondly, multiscaling (length-scales and

time-scales) IDP ensembles to model emergent phenom-

ena such as LLPS (Section ‘AI/ML for multiscale simula-

tions of IDP ensembles’); and finally, integration of sparse

experimental observations with simulations to infer

mechanisms of IDP function (Section ‘Statistical infer-

ence for integrating experimental data with simulations’).

Our review seeks to complement recent developments in

AI/ML applications geared towards protein folding/

dynamics [11]. Further, we seek to bridge these advances

in the context of simulation techniques for studying

emergent behavior [9]. We finally conclude with a per-

spective on how AI/ML techniques can be integral in

elucidating structure-function relationships of IDP/IDRs

(Section ‘Challenges and outlook’).

AI/ML for characterizing IDP ensembles
The range of conformations that IDPs can adapt is

primarily attributed to the distribution of amino-acid

residues along their primary sequences, where the ratio

of charged residues to hydrophobic residues gives rise to

specific patterning enabling them to vary their second-

ary (tertiary, and supra-molecular) structures in solution

[12,13]. Since sequence based approaches by them-

selves are not sufficient to fully characterize IDP con-

formational landscapes, MD (and/or Monte Carlo) simu-

lations are widely used to probe mechanisms of their

functions, typically accessing timescales ranging O(10–
100 ms) [14].

Dimensionality reductionmethods toorganize IDPconformational
landscapes. AI/ML methods are necessary to quantify the

statistical dependencies in atomistic fluctuations to

obtain biophysically-relevant low-dimensional represen-

tations spanned by IDP landscapes. Dimensionality

reduction methods summarize IDP ensembles in terms

of a small number of collective variables or latent dimen-

sions, where projections of the conformations from the

simulations capture significant events along these

dimensions [15]. These projections are referred to as

embeddings, where each conformation is represented by

the latent dimensions. An implicit requirement of these

embedding techniques is that they group conformations

in terms of biophysically-relevant observables (e.g. root-

mean squared deviations/RMSD, radius of gyration/Rg ).

Most dimensionality reduction techniques are unsuper-

vised — they exploit the intrinsic statistical structure

within the data to discover dependencies without the

need for explicit labels (e.g. within an IDP ensemble,

there is no explicit notion of what constitutes a folded/

partially folded/unfolded state made available to the ML
Current Opinion in Structural Biology 2021, 66:216–224 
algorithm). Dimensionality reduction techniques can

leverage linear, non-linear, or hybrid methods to learn

low-dimensional embeddings and here we provide a

succinct summary of how they have been used to charac-

terize IDP ensembles [16].

Principal component analysis (PCA) is one such linear

embedding method widely popular in analyzing simula-

tion trajectory datasets [15]. However, PCA and its deriv-

ative methods lack the ability to characterize conforma-

tional diversity purely based on covariance in positional

fluctuations alone. One key observation from several MD

simulations as well as experimentally determined IDP

ensembles is that their positional fluctuations exhibit

long-tail distributions — a natural consequence of their

ability to undergo large conformational fluctuations and

access rare states away from their mean positions. These

anharmonic fluctuations within IDPs are posited to be

functionally relevant, since such fluctuations enable them

to access conformational states relevant for binding to

their specific substrate. The anharmonicity also gives rise

to non-orthogonal correlations between individual atoms/

amino-acid residues (depending on the resolution at

which the data is being analyzed) [17].

ML techniques such as anharmonic conformational anal-

ysis (ANCA) provide a convenient framework to analyze

IDP ensembles especially in the context of disorder-to-

order transitions [18]. ANCA uses fourth-order statistics

to describe the atomic fluctuations and summarizes the

internal motions using a small number of dominant

anharmonic modes. In a recent study, time-resolved

ANCA was used to characterize disorder-to-order transi-

tions in the BCL2 homology 3 domain, BECN1 (BCL2-

interacting coiled–coiled protein) as it binds to the

murine g-herpesvirus 68 (M11) B-cell lymphoma 2

(BCL2) protein [19�]. This approach identified a small

number of conformational states that acted as intermedi-

ates in enabling M11-BCL2 to undergo partial unfolding

in response to BECN1 binding. It identified a network of

hydrophobic interactions, some farther than 10 Å from the

BH3D binding cleft that underwent specific conforma-

tional changes upon binding. These interactions were

validated using mutagenesis and isothermal calorimetry

demonstrating that perturbing the intrinsic anharmoni-

city within M11 can adversely affect both protein stability

and BECN1 binding.

Deep-learning methods in analyzing IDP ensembles. Long-

tailed fluctuations in IDP ensembles is a characteristic

indicator of multiscale behavior (Figure 1). Further, the

linearity assumptions in PCA and ANCA can be limiting

in extracting multiscale features from the conformational

landscape, especially when such embeddings are non-

trivial. Deep learning methods that leverage neural net-

works have proven to be successful in progressively

extracting multiscale features from raw inputs [20].
www.sciencedirect.com
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Deep neural networks such as autoencoders employ an

hourglass shaped architecture where data is compressed into

a low-dimensional latent space in the early layers and then

reconstructed back [21]. The latent space learns to capture

most essential information required for accurate reconstruc-

tion in the original dimensional space. Variational autoenco-

ders (VAE) is one such instantiation of autoencoders that

enforce the latent space to be normally distributed. Several

variations of the VAE neuralnetworkarchitecture have been

used to characterize latent representations from protein

folding trajectories, such as variational dynamics encoder

(VDE) [22], variational approaches for Markov processes

(VAMP) [23], reweighted autoencoded variational Bayes

for enhanced sampling (RAVE) [24], and the convolutional

variational autoencoder (CVAE) [25,26]. Although the con-

ceptual use of the VAE is similar, their implementations can

varybasedontheessentialfeaturesthattheyareusedtolearn.

For example, within VDE, the loss function includes a term

capturing the slowest processes in the simulation datasets,

whereas the EncoderMap [27] utilizes a loss term that

captures the proximity of conformations in the free-energy

landscape. Complementary to these approaches, recurrent

neural networks (RNNs) can serve as effective methods to

learn time-dependent embeddings from MD simulations.

RNNs, which are used extensively in natural language

processing and image processing applications can be used

to embed MD simulations to capture Boltzmann statistics

from the system but also accurately reproduce the kinetics

across multiple timescales [28��]. Another approach by Noe

and colleagues used a deep learning approach that is trained

on a potential energy function and builds a generative model

for conformational ensembles that respects Boltzmann sta-

tistics [29��]. The uniqueness of this approach is that it is

‘one-shot’, meaning that it does not need any reaction

coordinates and can produce unbiased samples, circumvent-

ing the expensive aspects of MD/Monte-Carlo simulations.

IDRs often function as linkers between several folded

domains (in multidomain proteins). This gives rise to an

exponential number of states that they can sample, mak-

ing it further challenging to characterize such complex

landscapes. Dynamic graphical models (DGM) propose

to address this problem by considering multidomain

proteins as assemblies of coupled subsystems where each

system is governed by the states it can access as well as

the states its neighbors can access [30�]. Although DGMs

use fewer parameters than their deep learning counter-

parts, it is difficult to incorporate prior experimental

knowledge and recover atomistic configurations from

its encoded representations.

AI/ML for multiscale simulations of IDP
ensembles
In the previous section, we described some of the recent

developments applying ML approaches to characterize

folding conformational landscapes. In this section, we
www.sciencedirect.com 
examine how AI/ML methods can firstly, inform efficient

sampling of their conformational landscapes and finally,

enable multiscale simulations of emergent phenomena

such as LLPS.

Determining reaction coordinates and enabling efficient sam-
pling of IDP conformational landscapes. The latent repre-

sentations learned from MD simulations provide infor-

mation relevant to reaction coordinates (RCs; also

referred to as collective variables, or order parameters)

that correspond to conformational changes along biophy-

sically relevant observables (e.g. Rg values, or helicity,

etc.). In a recent paper, Romero and colleagues demon-

strated that the CVAE-learned embeddings can be used

to cluster conformations from long time-scale simulations

of the lysosomal enzyzme glucocerebrosidase-1 (GCase)

and its facilitator protein saposin C (SAPC) along several

reaction coordinates [31]. The proposed conformational

changes along the CVAE-determined RCs provided

insights into key loop movements at the entrance of

the substrate-binding site within GCase that are stabi-

lized by direct interactions with SAPC. Note that this

approach only used the raw simulation trajectories of

GCase to infer the RCs and did not use any prior infor-

mation (such as distance between residues or other fea-

tures within GCase or SAPC). Similar insights can be

drawn from other approaches as well [32,33,34�]; how-

ever, the consequences of selecting a particular method

versus what RCs they extract, and how they represent

interpretable (biophysically meaningful) RCs remains an

open question.

RCs extracted from the analyses of MD simulations can

be used to drive additional sampling of the conforma-

tional landscape. This is the basis for many adaptive and

enhanced sampling approaches [35]. Techniques such as

variational enhanced sampling (VES) [36�], VAMPnets

[23], and RAVE [24] already include approaches for

enhanced sampling. Both VES and VAMPnets utilize

the variational approximation to enhance the sampling

based on some set of reaction coordinates that can be

determined by analyzing the MD simulations (see Sec-

tion ‘AI/ML for characterizing IDP ensembles’). How-

ever, RAVE utilizes the predictive information bottle-

neck principle as an RC, where it can predict the most

likely future trajectory given a molecule’s past trajectory.

This principle, combined with the estimates for the most

informative RCs (automatically determined from the

information gain associated with sampling along subsets

of RCs), the associated metastable states and equilibrium

properties provides simultaneous access to uncover the

unbiased kinetics for moving between different metasta-

ble states [37].

Generative adversarial networks (GAN) [38] have also

been used for enhanced sampling, where on-the-fly

training is used to modify the potential energy surface
Current Opinion in Structural Biology 2021, 66:216–224



220 Folding and binding
in order to drive the system to a user-defined target

distribution where the free-energy barrier is lowered.

This approach, called targeted adversarial learning

optimized sampling (TALOS) uses MD simulations

(for ‘generating’ protein conformations) and a discrimi-

nator (differentiate samples generated by the biased

sampler from those drawn from the desired target

distribution) to automatically guide the sampling pro-

cess [39��]. This approach is inspired from actor-critic

reinforcement learning ideas and is complementary to

approaches such as reinforcement based adaptive sam-

pling (REAP) [40�].

While AI/ML-driven MD simulations have been demon-

strated for smaller peptide/protein systems, there is a

need for effective middleware that can orchestrate com-

plex workflows and manage resources efficiently [35].

Conventional (non-deep learning) ML approaches take

perhaps between a few seconds to may be a couple of

hours to run and can easily be run concurrently with MD

simulation jobs as long as the data is made available for

analysis. Training deep learning models on the other

hand, can potentially take several hours (and even days)

similar to the same timeline as MD simulations, which

means resource management and scheduling has to be

managed to make use of available compute time effec-

tively. To address these issues, DeepDriveMD [41] cou-

ples the CVAE [25] with adaptive MD simulations to

accelerate folding of small proteins (up to 45 residues) on

emerging supercomputers. DeepDriveMD’s adaptive

protocol could accelerate the sampling by at least 2.3�
compared to traditional approaches. The adaptive sam-

pling protocols used within simulation frameworks can be

cast more generally as an optimization problem for bal-

ancing the cost of exploration (i.e. searching the IDP

landscape) versus exploitation (i.e. utilizing existing

knowledge to accelerate the search). The AdaptiveBandit

[42�] technique uses a reinforcement learning based

approach where an action-value function and an upper

confidence bound selection algorithm allows for substan-

tial improvement of the sampling strategy.

AI/ML approaches for learning force-field parameters and
multiscale approaches. Sampling IDP landscapes implies

the need to access a wide range of conformations, even

those with relatively low probabilities. While enhanced

and adaptive sampling techniques provide an opportunity

to access such low-probability conformational states, the

timescales that simulations can access is still limited [43].

Another potential challenge that limits the scale of sam-

pling IDP/IDR landscape arises from the force field

parameters used for these simulations. Several recent

advances in force field parameter development do address

these limitations specifically for IDP/IDR systems (see

[44–46]); however, artifacts related to how they are

parameterized and how they end up capturing interfacial

dynamics between IDPs and water (or other solvent
Current Opinion in Structural Biology 2021, 66:216–224 
conditions) still affect the overall quality of sampling

[47,48].

A complementary approach to this strategy is to use

AI/ML to iteratively fit and refine force-field parameters

in a data-driven fashion. One such approach, called For-

ceBalance-SAS [49�] (1) uses an initial ‘best’ set of

parameters, (2) computes ensemble averaged small-angle

scattering intensities from MD simulations, (3) measures

the residual with respect to experimental data, along with

the gradient and Hessian of the residual, and (4) opti-

mizes this fitting process from (1–3) iteratively until

convergence criteria are achieved. This process continues

with the newly updated set of parameters and simula-

tions, completing the cycle. ForceBalance-SAS can opti-

mize parameters for IDPs with varying molecular weight

and different charge-hydrophobicity characteristics,

albeit in a system-specific manner. While ForceBa-

lance-SAS fits to the global small-angle scattering profiles,

the force field parameters also resulted in better agree-

ments with NMR chemical shifts (local observables).

Further, the learned parameters could be transferred

and applied to other systems partially (for shorter time-

scale simulations).

For simulating emergent phenomena such as LLPS,

coarse-graining is an essential step for making simulations

tractable. While there are many approaches to coarse-

grain simulations for LLPS (see review by Mittal and

colleagues [9]), AI/ML approaches can aid in the devel-

opment of data-driven representations from all-atom

simulations for parameters needed at the coarse-grained

resolution. One recent approach called lattice simulation

engine for sticker and spacer interactions (LASSI) utilizes

Boltzmann inversion, non-linear regression and a Gauss-

ian process Bayesian optimization approach to parame-

terize the coarse-grained method for modeling sequence-

specific phase-behaviors [50]. Additionally, force-field

parameters simulating sequence-specific phase behavior

could be enabled by an approach such as CAMELOT

[51].

Deep learning approaches can also be used to automati-

cally infer coarse-grained representations from all-atom

simulations [52,53]. Advances in graph neural networks

are aiding the development of accurate coarse-grained

force field parameters [54��]. It however remains to be

seen how these approaches can be in turn generalized for

IDP systems [55]. Similarly, the Multiscale Machine-

learned Modeling Infrastructure (MuMMI) [56] was

developed to couple a continuum model with coarse-

grained MD simulations using ML approaches to charac-

terize how the oncogene RAS interacts with complex

biological membranes. Complementary to this approach,

adversarial autoencoders were coupled to multi-scale

simulations of the severe acute respiratory coronavirus

2 (SARS-CoV-2) Spike protein in complex with the
www.sciencedirect.com
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angiotensin-converting enzyme 2 (ACE2) receptor pro-

tein to probe the mechanisms of its infectivity [57��].
Automatic coarse-graining approaches using AI

approaches can be really attractive for tuning the scale

of coarse-graining that needs to be performed such that

IDP/IDR landscapes can be adaptively sampled to obtain

precise atomistic scale information about LLPS. Further,

the ability to simulate self-consistent ensembles at mul-

tiple resolutions (continuum ! coarse-grained ! all-

atom) will be critical for integrative structural biology

applications in the context of combining information from

diverse experimental techniques (see next section).

Statistical inference for integrating
experimental data with simulations
The previous sections outlined the use of AI/ML for

characterizing IDP/IDR ensembles. But the true power

of obtaining insights into the mechanisms of how IDPs

function and how their functions can be exploited for

therapeutic design [4], novel material discovery [58], and

synthetic biology applications (e.g. membraneless orga-

nelles for transport) [1] comes from the integration of

theory and simulations with experimental data. The

challenge with experimental data, however is that it

can be noisy, sparse, and often provide only partial

information when investigating a particular phenomenon

[10]. For example, solution scattering data for IDPs are

usually summarized using the scattering intensities

against a coarse structural measure such as Rg [59], and

in the case of single molecular Forster resonance energy

transfer (sm-FRET) experiments, a set of distances is

measured across the IDP structure [60]. Simulations on

the other hand, represent a full-scale system with all

degrees of freedom (e.g. 3 � N , where N represents

the individual atoms) implying a mismatch with the

intrinsic dimensionality of experimental data. In such

cases, how can one fit sparse experimental observables

with simulation datasets? A second challenge arises when

experimental datasets are unable to resolve flexible

regions in a protein (e.g. cryo-electron microscopy)

[61]. Given that often such flexible regions hold key

insights in terms of understanding ensembles of multi-

domain proteins, simulations can fill in the gaps by

providing probable states that these regions occupy.

But the intrinsic gap in terms of timescales that can be

accessed by simulations often ends up making it difficult

to extract such information. Thus, AI approaches, aug-

mented with Bayesian approaches can be quite helpful in

bridging the gaps between experiments and simulations

[10,62].

There are two broad strategies for fitting simulation

datasets with experiments. One strategy involves the

use of unbiased simulations and then reweighting the

generated ensembles using either maximum parsimony/

entropy approaches or with Bayesian strategies that uses

information known from simulations as a prior before the
www.sciencedirect.com 
introduction of experimental observables. The comple-

mentary strategy involves the use of a biased simulations

that are parameterized from experiments or using itera-

tive approaches outlined in [49�] to refine the force field

parameters to sample the IDP landscape of interest.

Similarly, integrated experimental and computational

simulations are also being used to understand energetics

of interactions between an IDP and its binding partner

[63]. Recent work by Lincoff and colleagues [64] also

extends the experimental inferential structure determi-

nation using a Bayesian formulation that calculates the

maximum log-likelihood of a conformational ensemble by

accounting for the uncertainties across a variety of exper-

imental data and back-calculation models. A similar inte-

grated modeling approach by Gomes and colleagues

[65��] demonstrated how conformational restraints

imposed using NMR, SAXS, and sm-FRET approaches

could reach agreement in the ensembles of Sic1 and

phosphorylated Sic1.

Challenges and outlook
From quantitatively probing the complex conformational

landscapes of IDPs to identifying disorder-to-order tran-

sitions or modeling emergent phenomena such as LLPS,

AI/ML approaches are proving to be an indispensable tool

for both experimental biophysicists as well as modelers.

However, AI/ML approaches for MD simulations still

face some challenges that need to be addressed.

Current AI/ML applications (barring a few like [18,29��])
tend to use fitting procedures in a blind manner, without

much physical bearing, or paying attention to the under-

lying statistical physics of the system of interest. The

resulting fitting procedure can end up overfitting and may

not generalize to fully leverage the power of AI/ML in

other domains [66,67]. In particular, transferring a AI/ML

model learned across simulations can be challenging.

AI/ML methods may also get stuck in regimes that are

not entirely physical — leading to issues in how appro-

priate (weighted) sampling can be achieved. Although

techniques such as cross-validation and regularization

alleviate these problems, there is a need to develop

rigorous statistical techniques as well as interactive tools

that can assess the performance of AI/ML models. A

second challenge arises when force field parameters are

designed using AI/ML. Here, the challenge is in main-

taining control over the versions of the force-field

designed by AI/ML approaches — where initial condi-

tions or datasets used for training, the inherent stochastic

nature of how deep learning approaches work, and even

program implementations (differences between how

TensorFlow and PyTorch modules are implemen-

ted) — can result in highly divergent results, even if

the physically represented parameters may in fact lie

reasonably within the same range. While the AI/ML

community already does similar activities through
Current Opinion in Structural Biology 2021, 66:216–224
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rigorous benchmarking applications [68], a similar effort

from the IDP/IDR community is needed to ensure

robustness, reusability, and reproducibility of models

across multiple studies. Efforts such as the IDP ensemble

[69] database provide for such an opportunity; however,

there is a need for the community-wide engagement to

assess these intrinsic issues.

Further, many of the AI/ML results are considered black box,
meaning that it is difficult to reason how the AI/ML model

made its inference. Even though there have been some

advances in enabling interactivity  with the outputs from the

AI/ML models [70], there is still the challenge of making it

interactive when large datasets are streamed. Developments

in interactive data analysis and virtual reality can aid this,

althoughsignificantdevelopmentsareneededtomakethese

approaches practical for emerging datasets.

Finally, computational infrastructure to support AI/ML

workflows in concert with simulations has been a long-

standing challenge [71]. Traditional approaches run MD

simulations continuously, store these large datasets and

eventually analyze them with AI/ML methods. However,

in the Exascale computing era, such approaches will become

infeasible as the sheer volume of data generated by these

machines can far exceed the capabilities of analyses that

needs to be done (and occasionally, computing resources for

AI/ML can exceed that of simulations). Approaches such as

DeepDriveMD [41] are examining such emerging needs of

complex workflows; however, we believe there is much

research that needs to be done in order to understand

how AI/ML workloads will interact with future simulation

workloads. With newer developments in AI techniques,

there is an opportunity to accelerate our understanding of

how IDPs play a role in disease, developing novel means to

design small-molecule inhibitors, designing new bio-mate-

rials, and engineering self-assembling systems for synthetic

biology applications. We believe these represent exciting

opportunities for the future.
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Noé F, Olsson S, Köhler J, Wu H: Boltzmann generators:
sampling equilibrium states of many-body systems with deep
learning. Science 2019:365 http://dx.doi.org/10.1126/science.
aaw1147

This paper provides a ‘one-shot’ learning approach to learn protein
conformational landscapes using a supervised training procedure using
neural networks and invertible transformations between coordinates of
the system of interest and Gaussian coordinates (of same dimensions).

30.
�
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Pérez A, Herrera-Nieto P, Doerr S, De Fabritiis G: Adaptivebandit:
a multi-armed bandit framework for adaptive sampling in
molecular simulations. J Chem Theory Comput 2020, 16:4685-
4693 http://dx.doi.org/10.1021/acs.jctc.0c00205

The authors demonstrate the use of reinforcement learning approaches
for adaptive sampling of protein conformational landscapes.

43. Bhattacharya S, Lin X: Recent advances in computational
protocols addressing intrinsically disordered proteins.
Biomolecules 2019:9 http://dx.doi.org/10.3390/biom9040146.

44. Zerze GH, Zheng W, Best RB, Mittal J: Evolution of all-atom
protein force fields to improve local and global properties. J
Phys Chem Lett 2019, 10:2227-2234 http://dx.doi.org/10.1021/
acs.jpclett.9b00850.

45. Yang S, Liu H, Zhang Y, Lu H, Chen H: Residue-specific force
field improving the sample of intrinsically disordered proteins
and folded proteins. J Chem Inform Model 2019, 59:4793-4805
http://dx.doi.org/10.1021/acs.jcim.9b00647.

46. Choi JM, Pappu RV: Experimentally derived and
computationally optimized backbone conformational
statistics for blocked amino acids. J Chem Theory Comput
2019, 15:1355-1366 http://dx.doi.org/10.1021/acs.jctc.8b00572.
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